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Given a rcctmlgl' ar %mutrix A(z) that depends on the independent variables z, many constrained

ABSTRACT

optimization mdthods involve compntations with Z(z), a matrix whose columns form a basis for
the null sparce AT(:::). When A is cvaluated at a given point, it is well known that a suitable
Z (satisfying ATZ = 0) can be obtained from standard matrix factorizations. However, Coleman
and Sorcnsen have recently shown that standard orthogonal faetorization methods iuay produce
orthogonal bases that do not vary continuously with z; they also suggest several techniques for
adapting these schemes so as to ensure continuity of Z in the neighborhood of a given point.
;F;l:xii.g?!))_cr is an extension of an carlier note that defines the procedure for computing Z.
Here, we first describe how Z can be obtained by updating an explicit QR factorization with
Householder transformations. The properties of this representation of Z wit.l}_}'gspcct to pertur-
bations in A arc discussed, inchuding explicit bounds on the change in Z. Wtz then introduce
regularized Hongscholder transformations, and show that their use implics continnity of the full
, matrix Q. The convergence of Z and Q under appropriate assumptions is then proved. Finally,
"we indimt.cﬁwhy the chosen form of Z is convenient in certain methods for nonlincarly constrained
optimization. < —
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A Dasis for the Null Space : o 1

1. Introduction

Given an n X m matrix A of rank m (m < n), many constrained optimization methods involve
computations with a (non-unique) matrix Z whose n — m columns form a basis for the null space
of AT (i.c., such that ATZ = 0). Typically, A represents the Jacobian of a set of constraints,
and the clements of A are smooth functions of an independent variable z (z € R™). Attention
has recently been focussed on the continuity properties of the associated Z, which turn out to
be crucial in proving local convergence for certain methods. For example, in Coleman and Conn
(1982, 1984), an esscntial assumption is that small changes in z lead to small changes in Z.

It is well known that certain factorizations of A provide stable and cfficient means for com-
puting Z. For cxample, given the QR factorization of A,

4=q(,) o

where @Q is an n X n orthogonal matrix, and It is an m X m non-singular upper-triangular matrix,
@ may bc partitioned as
o omon
Q=(Y ). (2

Coleman and Sorcnsen (1984) obscrved that the standard method of computing the QR
factorization through Houscholder matrices may not provide a continuous representation of Z(z).
They proposed several alternative strategics for ensuring a continuous Z, based on removing the
discontinuity associated with the sign that defines each Houscholder transformation. Gill ot al. -
(1983) present an updating technique that provides a continuous representation of Z. Byrd and
Schnabel (1984) note that inherent discontinuities exist if Z is defined as a function of z, except
in certain special cases., . .

This paper is an extension of Gill et al. (1983). The matrix Z is a submatrix of an explicit
orthogonal matrix @, which is obtained by updating the Q R factorization. In Scction 2, we sum-
marize the procedure for computing Z and Q. In Section 3 we give explicit bounds for the change
in Z resulting from perturbations in z, and show that Z is continuwous in the neighborhood of a
point where A has full rank. We then iotroduce the class of regularized Houscholder transfor-
malions, analyze the effect of perturbations in z on 't.lw full matrix Q, and give a similar proof
of continnity. In Section 4, we prove that Z approaches a limit when compated at a sequence of
points {zx} converging sufliciently fast to a snitable point a:*(.'uul simmilarly for ¢ when regularized
Houscholder transformations arc used). Nutnerical examples are given in Section 5 to illustrate
some of the results, Finally, in Scction 6 we discuss the chosen representation for Z in the context
of algorithms for constrained optimisation.

2. Representation and computation of Z

It is esaential to distinguish between the theoretical definition of Z as a matrix whose coluinns

have specified properties, and its realization as a data structure with which computations are
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2 ' A DBasis for the Null Space

performed. Although a “matrix” may be used as a pedagogical convenience in describing an
algorithm, it will not necessarily be represented as an explicit two-dimensional data structure
within an implementation. For examnple, the standard Houscholder method for computing the
QR factorization (1) (sce, e.g., Stewart, 1973) results in a special scquence of m Houscholder
transformations that are stored in compact form (cach represented by a vector). This implicit
form of QQ'is acceptable in many contexts — in particular, most optimization algorithms do not
require the clements of Z, but rather ouly the ability to compute products involving Z and its
transpose. With an implicit Q, opcrations with Z arc performed by applying the sequence of
transformations (not by explicit matrix multiplication).

In contrast, the procedure to be described obtains Z from a QR factorization in which Q
is stored explicitly. We assmne that A(z) is the Jacobian of a mixture of lincar and nonlincar
constraints. Accordingly, let the m columns of A(z) be partitioned into two groups: the first m,,
columns (denoted by A, and termed the constant columns) are independent of z, and correspond
to the gradients of lincar constraints; the last m, columns (denoted by A ~(z), and termed the
variable coluinns) vary with z, and correspond to the gradients of nonlincar constraints. Thus,
A and R in (1) have the forms

R, T
A = A A d R = i 3y
( A N) an ( 0 RN)

where R, and Ry arce upper-triangular. The factorization (1) of A is assumed to be available,

m=0(?). 3

Now coasider a dilferent matrix A, given by

with QQ stored explicitly. Note that

A=(A, AL | (4)

- R, T
A=Q(0' V)’

where Voin (n - m,) X my. Thus, Q triangulavizes the fiest m,, columns of A, and the QR

It follows from (3) that

factorization of A can be obtained by triangularizing V. In order to perform this computation,
wo apply my upd.;ut('s to the QR factorization (3) of A, while the colnns of Ay are added one
at a time. The crucial point about this approach is that the factoriszation is updated after cach
colummn is added. Thus, after the é-th column of A, has been processed, an explicit orthogonal

matrix is available that triangularizes columms 1 through m, + ¢ of A.

To deseribe the work associated with cach update, we consider an 1 x (5 — 1) matrix C whose

. (R
C=Q(0)

QR factorization is given by
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Let C = (C c) for some vector ¢. Then, from (5),

47 = (¢¢ QTc)=(f :) (®)

We now construct the Houscholder transformation H; that lcaves ¢ unaltered and annihilates all
but the first clecment of v. If Y
0= (5):
\ v

where v is the j-th diagonal clement of QTC‘, then

Hiv)=1T1- luuT,

B
where
i-1 1
et iz, .
u=(0,...,0, v +sign(v)|vll, 67), B= —2-||u||2 (7)

(Unless otherwise stated, || - || denotes the Euclidean vector norm or the induced matrix norm.)

We then have B
.« ~ (R
¢=qa; o o|=0("),
' 0 O
where p = —sign(v)||v]| and

Q = QH,. S

The following should be noted: only columns j through n of é arc altered by Hy; H; depends
only on v (uot on t); and II;(«w) = II;(v), where a is any non-zero scalar.

In order 1o obtain the factors of A (4), the above procedure is repeated my times, beginning
with C=A,, R = R,, and Q = Q: cach columm of A, then takes the role of ¢ in (6). With this
approach, a “current” orthogonal matrix (which, for simplicity, we shall denote by (}) is always
available after cach column is added. Because cach Honscholder transforination is applied to
Q before the next. transformation is consteneted, @ ropresents all previous transformations. By
applying Q 1o the new column as the fiest step in each update, the effect is to apply the entire
sequuence of Householder transformations. Therefore, cach Houscholder matrix is not applied to
the remaining (untransformed) columus of Ay, in contrast to the standard Houscholder procedure.

Completion of a single update involves three steps: (i) formation of Q¢ to obtain v, (1) defi-
nition of u, and (iii) application of the Houscholder transformation to Q. The desired factorization
of A requires my updates, and the final Q satisfics

QT=Hpn-- - H,QT. (9)

The total work required to obtain @ and £ is of the order of 2nmy (n — m,) + nmy(n — my)
operations. |
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3. Perturbation analysis of Z and Q

In this section we analyze the effect of the procedure of Section 2 when applied at points “near”
a point £ where A(#) has full rank. Roughly speaking, the desired continuity properties involve
showing that small changes in z lead to small changes in Z. The proof is complicated by the fact
that the class of Houscholder transformations does not include the identity matrix or any matrix
ncar it. Thercfore, considering (9), the full matrix Q is not continuous. However, it turns out
that small changes in z do lead to small changes in the columns of Z. Explicit bounds on the
perturbation in Z arc derived in Section 3.1.

Although 'this result is satisfactory for methods in which only Z is required, continuity of all
of @ is uscful in other contexts — for example, when an explicit representation of the range space
is used in an update. To extend the continuity result to all of @, in Section 3.2 we introduce
the class of regularized Houscholder matrices (which does contain the identity), and show that
bounds similar to those for Z in the standard case can be obtained for all of @ when updates are
performed with regularized Houscholder transformations.

3.1. Perturbation in Z For snuphmty, in this section we assume that m, = 0, i.c., that all
columns of A are variable; the analysis can be applied in a straightforward manner when constant

colunms arc present. Given any ¢, > 0 and the associated neighborhood of points % + 6z, where
ll6z]| < ez, (10)

we analyze the computation of Z(Z + 6z) from Z(£) using the procedure of Scction 2,

Let A denote A(%), and A denote A(£ + 6x), with a similar convention for Q and Z. The
QR factorization (1) of A is assumed to be given. Since A is a twice-continuously differentiable
function of z, given any ¢ > 0, there exists ¢, such that (10) implics

"A=A+6A, where |PA|<e ' (11)

The existing QT “ahmost” triangularizes A, i.c., .
T: _ R A
QTA=R=()+E, (12)

where ||E]l € «. In order to triangularize R, the procedure of Section 2 coustructs a special
sequence of m Houscholder transformations {4, ... l,,}. Thus, we have

. (R -
A=Q(o), with QT=H,,---H,QT. (13)
The jth tramsformnhon H, is constructed so that its application to a vector v docs not alter
components 1 through 7 — 1, and annihilates components 7 + § through n.

The matrix Z corresponding to A comprisess the last 1 — m colmnns of Q. To cxamine the

changes in this part of Q, we introduce a sequence of diagonal matrices {D,}, 7 = 1,...,m, with

i n—j
P S
D, = diag(0,...,0, 1,...,1).
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Then, from (2),
QD =(0 2Z).
Since

QOT-QT=(Hp---Hy - )QT

and ||Q|| = 1, we obtain the following bound for the change in Z:
IZ ~ ZI| S |Dm(l = Hn -+ H)Il. (14)

To derive a bound for the right-hand side of (14), observe that the special structure of Hj
implies that
D;H; = D;H;D;-,. (15)

Using (15), the fact that [[D;H;|| < 1 and the identity
D;(I — H;--- Hy) = D;(I — H;) + D;H;(I - Hj_, -+ H,),
wc obtain

\D;(I - Hj--- Hy)|| = |Dj(I — Hy) + D;H;iD;j_y(I — Hj_y -+ Hy)||
< D;(I — H)|| + |Dj-1{I — Hj—y -+ Hy)f. (16)

Thercfore, if we develop a positive sequence {n;} such that
m=0 and n;>miy+ DI M), j=1,...,m, (17)

it follows fromn (14) and (16) that
IZ - Zll < 1. (13)

The quantity needed to. define {n;} is an upper bound on ||D;(I - Hj)||, which we shall
obtain by examining the strncture of the j-th Honscholder matrix H;. In order to simplify this
process, we prove the following lemma, which shows that the sequence of Houscholder matrices
needed Lo triangularize a gi_vvu matrix is nnaffected by postinultiplication by an upper-triangular
matrix.

Lemma 1. Let

R
Hp---HiA= (0)

represent the reduction to triangular form of the full-rank matrix A by Houscholder transforma-

tions as described in Section 2. Lot S be a nonsingular upper-trinngular matrix, and Iot A' = AS.
If

' R’
H! ---H'A':( )
m 1 0

A SRR /g ire IS AR B A AR I A Jite, R B Rte SRR ML A Nl Pl Nl Wil Sl Sl A -0 I B BT A e
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represcnts the triangularisation of A' by Houscholder transformations, then

H;=H!, i=1,...,m.

Proof. The proof is by induction. Let a; denote the ith column of A, and similarly for a and A'.
To begin the induction, note that since @ is a nonzero multiple of a,, it follows that Hy = Hj.
Then suppose, inductively, that H; = H], ¢ = 1,...,k — 1. At the kth step, Hj is determined
by the last n — k + 1 components of Hy_.y -+ Hyax, and:likewise H} is dctermined by the last
n — k + 1 componcuts of H;_, --- Hia). By dcfinition of A’ and our inductive hypothcsis, we
have ‘ . N
Hl':-l ---Hia;‘ = IIL_l u-H{(sk,kak + Sk-1,k0k-t + 00+ sl'kal)

= Hy_1---Hi(skiok + 8k-1,k0k—1 + - + 81401).
By construction of Hy._.y,...,H;, the last »» — k + 1 components of Hy_; -+ Hya;, ¢ < k, are
secro. Therefore, the last n — k +1 components of Hy_, --- Hia}, arc a nonzcro multiple of the
last n — k + 1 components of Hy g -+ iIlak, and it follows that H; = He. §

From (12), the matrix to be triangularized is

~ (R
R=(0)+E=WR,

where ,
I -1
W= (0) +A and A=ER. : (19)

Becanse of Lemma 1, the sct of transformations that triangularize R arc the same as those that
triangularize W (a perturbation of the identity). .
Let W,- denote the matrix to be reduced at the j-th step, ic.,

WjEH,'..]*“le,

where the first 7 — 1 columns of W,- arc already in upper-triangular form. Let 1%; denote the j-th
columm of W,-; let ¢; denote the first 5 — 1 componceuts of 165, w; its j-th component, and o; its

last i - j components, so that

T _ . ~T ‘

W) = (t],v]) with vf: (vj, ;). (20)
Thus, v, is the vector to be reduced at step 5. From (7), the Houscholder vector u; is defined by

j-1
P . ~ b
WT= (5,20, v; + vigu(w)uil, 7). 21

Note that

Valiv;ll < llujll < 2lv;l. " (22)
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Using norm incqualities and (22), we obtain

2lD.u.ut ’ 0. , . >,
D, (I - E;)|| = ID;ju; ;I“ < 2(l9;lllluill _ 2 195 < ﬁ"”:" (23)

[ N ] llesll°

It follows immediately that the perturbation in components j -+ 1 through n of any vector w

after application of H; satisfies:
19,0 - Hw)l < VE ol (24)
5 .
We now (ievclop an upper bound for ||4;]| and a lower bound for ||v;||. Let §; denote the
norm of the j-th column of A (which, from (19), is also a bound on the norm of the vector of

subdiagonal clements in the j-th column of W). Because Householder matrices are orthogonal,
the j-th colunn %, of ﬁ_’j satisfies

1-6; < [lw;ll < 1+8;. . (25)

To obtain a lower bound for [jv,]|, we repeatedly apply (24) and (25) to bound the perturba- '
tion in components j through n of column j of W,-. Formally, let the set of positive values {§;,5},
j =1,...,m be dcfincd as follows:

Ga=1-6

. . 2
Eigrs = e,-,;—aiﬁ(—é#”—), i=1..,5- L ~ (z6).

Then v, the vector to be reduced at the j-th step, satisfies
llo;ll 2 &5 ' (27)

We asswne that ||A]| is sufliciently small so that £, ; remains positive.
33 p >
Since v; corresponds to the subdiagonal clements in colunn 3 of W, we defiiie the scquence

{pj,j},jzl,...,m,as

Big = 6;
V2(L+6) . . (28)
Biir1 = Bis+ bgi_—(—-——’—)-, s=1,...,5—1
i
It follows from (24) and (25) that .
151 < Bj.;. ' (29)

Thercfore, using (23), (27) and (29), we have

e 195
1D, - ;)| < v3 1%l
M= Ay sl

<vzhid,

y (30)
i

____________
...............................................
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Applying (30) to (17) and (18), we obtain the following bound:

1Z-2z| < vz (Bt 4+ .. 4 Emmy, . (31)
£1.1 £m,m

This expression is intractable as it stands. However, when ||A|| is small, we can obtain a

simple cxpression for the upper bound in (31). First, note that if §; < 1, then (26) implics that

€,.; is of order unity for all j. It follows from (28) that the growth in p;,; is approximately linear,

ie.,
. )
pig S V2 )65
i=1

Let

§=||ERY|, (32)
so that 8; < § for all 5; then

pi < IV26.

Substitating in the bound on ||Z — Z|| in (31), we obtain

1Z - z|| < —‘;——gm(m +1)8. (33)

Let a denote the smallest singular value of A. Since ||[R7!|| < @~ ! and § < |E|R7}), it
follows from (33) that '
I1Z - 2| < pa || EJ}, (34)

where p depends only on m. As in standard error analysis, we highlight the dependence of the
bound on the condition number of A by rewriting (34) as
_ E
1Z — Z|| < p cond(A) u
4l
where cond(A) is the ratio of the largest to the smallest singular values of A.
The proof of uniform continuity of Z at £ is alinost immediate. First, note that p and a are

independent of dx. Second, recall that ¢ — 0 as «, — 0. It follows dircetly from (34) that

lim
f15=1t -+0
The bound (34) is interesting because, although Z is not unique, the mmll space itsclf (denotec
by Q) is. Let Q denote the null space of AT from (11). If we measure the distance between Q anc
Q by the norm of the difference of the projectors onto them, then Q and Q differ by a quantit

that is asymptotically bounded by « “*||E]|. In Davis and Kahan (1970), it is shown that ther

cxists a rotation P such that PQ = 0, and ||I — P)| is minimal (in this case, approximatcl
a ||E||). Thus, the choice Z = PPZ would provide the “best” algorithin for updating Z. Tt
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bound (34) is larger by a factor of order m? than the bound corresponding to the optimal choice of
rotation. However, for some matrices E, a!||E|| may be a substantial overestimate of [|[ER™|],
which may in turn be a substantial overestimate of §; for some j. This will be illustrated by
Example 2 in Section 5.

3.2. Regularized Houscholder transformations; perturbation in Q. Although thc matrix
Z obtained using ordinary Houscholder matrices undergoes small perturbations in a neighborhood
of Z, the same does not hold for Y (the first m columns of Q). In fact, the cffect of applying
cach sct of transformations {H;} is to change the signs of the columns of Y. Thus, no bound
analogous to (34) can be obtained for Y. However, the difficulty can be circumvented by defining
the regularized Houscholder transformation H ; to be ‘
i1
H; = D;H;, where Dj;=diag(l,...,1,-1,1,...,1), : (35)

ie., H j is H; with the sign of its f—th row reversed.

In this section, we derive a bound on |@ - Q|| where @ is obtained from Q by the procedure
of Section 2, but using regularized rather than standard Houscholder transformations. Because
the derivation of the bound is so similar to that for ||Z — Z||, we simply highlight the major
dilferences. o

The relationship analogous to (16) for regularized Houscholder transformations is
I~ B Holl S W= Hl + M = Hjoy oo Hilo
Hence, if we derive a sequence {7j;} such that
fio=0, ;2 ;1 + -,
then
1R - QU < fim.

Lemma 1 applies to regularized Houscholder matrices, so that we need to consider only matrices
of the form W in (19). )

The eritical quantity to be determined is a bound on ||[I — IT;||. To illustrate the process,

consiler I~ Il = I - Dy, Using (20) and (21), v will denote thie veetor to be reduced, and

the corresponding Houscholder vector u is given by

_ (V + sigl:(l/)llv") '

]
By definition of /Ty, we have

||u||2—uf ~Ugldg ... —ULU,

I ﬁ B p) ugug u; e U Uy
Ik ;
U U, Uty ... ul

. ..' \. G‘. h.- . - . L .>- - - .
. RN T T S
K A P R A A A o PSR TR S,
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10 A Basis for the Null Space

The Frobenius norm of this matrix may be obtained by direct computation and bounded using
(22), giving

-ty

Since || Jl2 £ ]| - ||F, the following lemnma follows 1mmcd1ately.

Lemma 2. Let H, be the regularised Houscholder transformation defined by (35), (20) and (21);

then

I - A, < 21%1 (36)
oIl

Exactly as for (24) through (31), we can then derive

10 - QU< 2 (gt +-o 4+ B22).

(Note that this differs from (31) only in the constant multiplying the right-hand sxdo) When
[IA|} is small, we have the samc form of bound as in (34), namely

1@~ Qll < pa™|IE],

where p depends only on m. Continuity of Q at z follows cxactly as for Z.

4. Convergence of Z and Q

One reason for interest in the continuity of Z is in proving local convergence results for nonlin- .
carly constrained optimization methods that maintain estimates of the projected Hessian of the
Lagrangian function (e.g., Coleman :md Conn, 1984a, b). Hence, we now turn to the computation
of Z within an iterative method that generates a sequence {zx}, where Qg is computed from
Qr using the procedure of Section 2.

We assume that {zx} converges to a point Z such that A(z') has full rank. Thus, there
cxists an integer K such that for all kK > K, A(zi) has full rank; we shall consider only such
values of k. We further assume that

Z||zk—-s:||<+oo.

k0

This implics that for any ¢ > 0, there exists an integer K such that for all I > k> K > K,
et = ziall + -0 + Nz — 2l < e . (37)

For a given value of ¢ in (37), we shall consider only values of the iteration connt that cxceed the
associated K. .

The bound (34) lews that, for suflicicntly large K, there exists a positive constant M,
independent of k, such that for all k > K,

|Zk+1 = Zal] < M||zk1 — 2.

LR P LR MR DI S U . e e T R

e . A . - “ . iy ..
L I A ST N N S P ) - S -, --------
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Therefore, we have for all { > k > K,

NZ: - Ze| S N2 = Zi-all + .-« + |2k = Zil
< M(llz — zi-afl + ... + |Zkes — zel))- (38)

Becausc of (37), the sum on the right in (38) can be made as small as desired by appropriate
choice of K, and hence || Z; — Zi|| can be made as small as desired. Thus {Z;} is a Cauchy
sequence, and therefore converges to a limit Z* as {z;} converges to £ . We emphasize that the
limit Z* depends on the sequence {zy}.

If regularized Houscholder matrices are used to define Qk+1 from Qy, exactly the same result
holds for the full matrix Q.

5. Numerical examples

F In this section, we illustrate some propertics of the method with two simple examples.

Example 1. Let 7o = (1,0,1)T and 2* = (0,1,2)T. We dcfine the function a(z) = z, and
consider the following scquence, which begins at zp and converges to £ so as to satisfy (37):

- (2
zx=]1- (—1./2)"
2-—1/2%

With Q_; = I, the matrix @y is the Houscholder matrix

~-.70711 0 -.70711
Qo= 0 1 0
< : -.70711 0 .70711

For cach k, Zi is the last two columns of Q.

All computation was p-(!rfnnnc(l using double-precision arithmetic on an IBM 3081, corre-
sponding to about 16 decimal digits of precision. All numbers shown are rounded to five figurcs.
Al steps 10 and 11, where ||zgy — Z5g]} = 2.1284 x 10" 3, we have

-.000437 -.28042 -—.95988

‘Qo=| -.80451 85868 —.25066 |,
X —.44704  —.42000 12574
- ~.000218 -.28042 -.05088 )
- Qu=| 8030 85830 -.25088 |,
® AATA8 - .42058 12530 |

- which corresponds to [|Zyy — Zyollr = 8.1736 x 104, Note the change of sign in the first column
. of Q.
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A sequence of orthogonal matrices was similarly generated for the following sequence {y},

. . *
which also begins at zg and converges to x':

1/2*
w=|1-1/2*
2—1/2k

Note that Q(yo) = Q(zo). Howcver, all subscquent matrices differ for the two sequences.
In both cases, the Z matrices converge, but to different limits:

( 28042 -.05088 )

- Jim Z(z¢)= | 85854 -.25082 |,
— 00

\ —.42027  .12541 )

(-.19371 —.98106

Jim Z(y) = | 87749 17326
—+Q00
\ -.43874  .08663 )

The first column of the limiting matrix Q(z*) is +(0, .89443, .44721)T.
For comparison, the Q matrix that would result from applying a standard Houscholder

reduction at z” is given by

0 —.80443 —44721
Qi) =] —.80443 -4 8
—.4472 8 -4

Example 2. The sccond example shows how the relationship between E and R in (19) can
affect the actual change in Z, although the bound (34) remains wnchanged. Lot A be 6 x 3, with

R given by ' 4 g
10

R= 10 1

1

The smallest singular value of R is of order unity. Consider a matrix E such that |E|| = O(1);
then (34) implies that the change in Z can be of order unity.

This bound is achieved, for example, if £ is given by

107 1007 1
E= : : o
1007 10°7 1

since ||[ER~!|| is of order unity, i.c., similar in magnitude to ||E||||[R~!|]. However, if
1 1077 10”7
e=|: |,
1 10-7 1077
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then the perturbation in Z is of order 10~7 (much less than the bound) because |[ER™!|| =
o(107") < || BRI '

6. Comparison with alternative procedures

In this section, we comparc the proccdure of Section 2 with an alternative technique for obtaining
an explicit matrix Z. We cmphasize that an explicit Q is required in the most popular algorithms
today for solving constrained problems with inequality constraints. An implicit Q is suitable
if A changes only by the addition of columns. However, any other change to A can be made
efficiently only. by access to an explicit Q. Inequality constraints are most often trecated by posing
a quadratic programming (QP) subproblem with lincarized (inequality) versions of the original
constraints (sce Powcll, 1983, for a survey of scquential quadratic programming methods). The
QP is solved by devcloping a workiu.g set A that undergoes the addition and dcletion of columns
until it becomes the active set of the QP. Furthermore, if simple bound constraints are treated
scparatcly from general lincar constraints, the matrix A is also subject to the addition and/or
dclction of rows (sce Gill et al., 1984a, for dctails of the update proccdures).'

The most obvious alternative to the method of Scction 2 is to apply a standard Householder
procedure in which the Houscholder vectors are stored in compact form during the triangular-
ization; we shall refer to this as the implicit procedurc. Assuming that the m, transformations
corresponding to constant columns of A arc retained, the matrices R and @ of Section 2 can be
computed using the standard Houscholder procedure in my (2nm,, — m3) opcrations to apply the
m,, fixed transformations to A, and %imf, + m32 (n — m) opcrations to produce the desired tri--
angular form. The explicit matrix @ is then formed by multiplying the transformations together
in reverse order, which requires 2nm(n — m) + %ms opcrations.

When no lincar constraints are present (m, = 0), the implicit procedure requires less storage.
and work than the explicit procedure. However, as the proportion of lincar constraints increases,
the explicit procedure eventually requires Iess work (in effect, because the implicit procedure must
repeatedly multiply together the Houscholder transformations corresponding to linear constraints
in order to obtain the explicit matrix Q). We stress this point because many optimization
problems contain a significant proportion of lincar constraints. Although it is simpler to treat all
constraints as nonlinear for expository purposes (as'we have done in Seetion 3), their existence
should be considered when analyzing the work associated with a practical algorithm.

To summarize, the procedure of Section 2 ensures the continuity propertics of Z necded in
many constrained optimization algorithms, and can casily be extended to imply continuity of Q
Furthermoro, its cost is comparable to (or even less than) that of the implicit procedure when
the problem contains a significant proportion of lincar constraints. "

et A A AT T e e R A A S A N SN

\-.\.‘\. \-.\...‘.-‘.. .



A Tt ey PRCEM IR N M A St St e il i ol il W (o tn o S M Mg S e A A S e Al A AR B AR AL AP A YL AL AL RS EE ar AL L A SN RN "

...............

14 A Basis for the Null Space

References

Byrd, R. H. and Schnabel, R. B. (1984). Continuity of the null space basis and constrained opti-
mization, Report CU-CS-272-84, Department of Computer Science, University of Colorado,
Boulder, Colorado.

Coleman, T. F. and Conn, A. R. (1982). Nonlincar programming via an cxact penalty function:
asymptotic analysis, Mathematical Programmming 24, pp. 123-136.

Coleman, T. F. and Conn, A. R. (1984). On the local convergence of a quasi-Newton method for
the nonlincar programming problem, STAM Journal on Numerical Analysis 21, pp. 755 -769.

Coleman, T. F. and Sorcnsen, D. C. (1984). A note on the computation of an orthogonal basis
for the null space of a matrix, Mathematical Programming 29, pp. 234-242.

Davis, C. and Kahan, W. M. (1970). The rotation of cigenvectors by a pcrturbation, I1I, SIAM
Journal on Numecrical Analysis T, pp. 1-46.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1983). Ou the represcntation of a
basis for the null space, Report SOL 83-19, Department of Opcrations Research, Stanford
University, Stanford, California.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1984a). Procedures for optimization
problems with a mixture of bounds and general lincar constraints, ACM Tramsactions on

Mathematical Software 10, pp. 282-298.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1984b). User’s guide to SOL/ QPSOL
(Version 3.2), Report SOL 84 6, Department of Operations Rescarch, Stanford University,
Stanford, California.

5ill, P. E,, Murray, W., Saunders, M. A. and Wright, M. H. (1984c). User's guide to SOL/NPSOL
(Version 2.1), Report SOL 84-71, Departinent of Operations Rescarch, Stanford University,
Stanford, California.

Powell, M. J. D. (1983). “Variable metric mcthods for constrained optimization”, in Mathe-
matical Progrannuing: The State of the Art (A. Bachem, M. Gritschel and B. Korte, eds.),
pp. 288 311, Springer-Verlag, Berlin,

Stewart, G. W. (1973). Introduction to Malrix Computations, Academic Press, London and New
York.

F e RO O
N, -f:'}‘.i‘.nt.t.t. AN -L.,.-.'.:.:.c;,.-_:.c.‘.:_:.-..:




"h‘l*\"q'\"t""‘"’“?‘l".- e A ey e S S S Sagh Saeg CShath Shali Tt Tt A gt A CRARSa - A et i e i o DA Shens Sen

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
NUN SOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER |
Auz_m:a-_s-m[/\ N-AL5T¢

4. TITLE (and Subtitie) S. TYPEZ OF REPORT & PEMIOD COVERED

Technical Report

PROPERTIES OF A REPRESENTATION OF A BASIS

FOR THE NULL SPACE 6. PERFORMING ORNG. REPORT NUMBER
(7. AUTHOR(®) [ % RACY OR GRANT NUMBER(S)
Philip E. Gill, Walter Murray, Michael A. N00O14-75-C-0267

Saunders, G.W. Stewart, and Margaret H. Wright DAAG29-84-K-0156
. PERFORMING ORGANIZATION NAME AND ADDRESS . PROGRAM ELEMENT, PROJECT, TASK |
Department of Operations Research - SOL ‘w‘“" UNIT NuMBERs

Stanford University NR-047-143
Stanford, CA 94305
11. CONTROLLING OFFICE NAME AND ADDRESS 12. AEPORT DATS
Office of Naval Research - Dept. of the Navy February 1985
800 N. Quincy Street 3. NUMBER OF PAGES
Arlington, VA 22217 14
T ioniToRinG AGEREY WANE & ADORESS(IT iferent romm Controiiing Office) | 5. SECURITY CLASS. (of o repert)
U.S. Army Research Office
P.0. Box 12211 UNCLASSTFIED
Research Triangle Park, NC 27709 W

6. DISTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale;
its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Blosk 20, I diffesent irem Report)

18. SUPPLEMENTARY NOTES
The view, opinions, and/or findings contained in this report are those of

the author(s) and should not be construed as an official Department of the
Army position, policy, or decision, unless so designated by other documen-
tation.

19. KEY WORDS (Continue en reverse aide I noceseary and identify by biosk number)

constrained optimization null space basis

QR factorization regularized Householder transformations

20. ABSTRACT (Centinue en roverse side If neceseary and identity by beck number)
(See next page)

DD ,%n'3s 1473  eomon oF 1 nov 68 13 oesoLETE

SECURITY CLASMPICATION OF THIS PAGE (When Data ntere®d




.....................

SECUMTY CLASSIFICATION OF THIS PAGE(When Date Enlered)
S

SOL 85-1: PROPERTIES OF A REPRESENTATION OF A BASIS FOR THE NULL SPACE
by Philip E. Gill, Walter Murray, Michael A. Saunders, G. W.
Stewart and Margaret H. Wright.

Given a rectangular matrix A(x) that depends on the independent
variables x, many constrained optimization methods involve computations
with Z(x), a matrix whose columns form a basis for the null space of
AT(x). When A 13 evaluated at a given point, it is well known that a
suitable Z (satisfying A?Z = 0) can be obtained from standard matrix
factorizations. However, Coleman and Sorensen have recently shown that
standard orthogonal factorization methods may produce orthogonal bases that
do not vary continuously with x; they also suggest several techniques for
adapting these schemes so as to ensure continuity of Z 1in the neighbor-
hood of a given point.

This paper is an extension of an earlier note that defines the proce-
dure for computing Z. Here, we first describe how Z can be obtained by
updating an explicit QR factorization with Householder transformations.
The properties of this representation of Z with respect to perturbations
in A are discussed, including explicit bounds on the change in Z. We
then introduce regularized Householder transformations, and show that their
use implies continuity of the full matrix Q. The convergence of Z and
Q wunder appropriate assumptions is then proved. Finally, we indicate why
the chosen form of Z 18 convenient in certain methods for nonlinearly
constrained optimization.

SECURITY CLASSIFICATION OF Tv'® PAGE(WRe:  sto Entered)

I
DY “u s . - Tt N

R el e e e e ..}_.\_.

LA W W PR S TR S T R Y




oy R AN SRS Y~ LS o N Rarn SRR
APV I PR A R PRI A I SR A oL S e T A g

.




